Query & integrate data#

import lamindb as ln
import lnschema_bionty as lb

lb.settings.species = "human"
馃挕 loaded instance: testuser1/test-facs (lamindb 0.54.2)
ln.track()
馃挕 notebook imports: lamindb==0.54.2 lnschema_bionty==0.31.2
馃挕 Transform(id='wukchS8V976Uz8', name='Query & integrate data', short_name='facs2', version='0', type=notebook, updated_at=2023-09-27 19:03:58, created_by_id='DzTjkKse')
馃挕 Run(id='eA3SzcdxdSmlKbTlpgUp', run_at=2023-09-27 19:03:58, transform_id='wukchS8V976Uz8', created_by_id='DzTjkKse')

Inspect the CellMarker registry #

Inspect your aggregated cell marker registry as a DataFrame:

lb.CellMarker.filter().df().head()
name synonyms gene_symbol ncbi_gene_id uniprotkb_id species_id bionty_source_id updated_at created_by_id
id
0qCmUijBeByY CD94 KLRD1 3824 Q13241 uHJU RlqM 2023-09-27 19:03:35 DzTjkKse
bspnQ0igku6c CD16 FCGR3A 2215 O75015 uHJU RlqM 2023-09-27 19:03:35 DzTjkKse
ttBc0Fs01sYk CD8 CD8A 925 P01732 uHJU RlqM 2023-09-27 19:03:35 DzTjkKse
ljp5UfCF9HCi TCRgd TCRGAMMADELTA|TCR纬未 None None None uHJU RlqM 2023-09-27 19:03:35 DzTjkKse
yCyTIVxZkIUz DNA2 DNA2 1763 P51530 uHJU RlqM 2023-09-27 19:03:35 DzTjkKse

Search for a marker (synonyms aware):

lb.CellMarker.search("PD-1").head(2)
id synonyms __ratio__
name
PD1 2VeZenLi2dj5 PID1|PD-1|PD 1 100.0
CD16 bspnQ0igku6c 50.0

Look up markers with auto-complete:

markers = lb.CellMarker.lookup()

markers.cd14
CellMarker(id='roEbL8zuLC5k', name='Cd14', synonyms='', gene_symbol='CD14', ncbi_gene_id='4695', uniprotkb_id='O43678', updated_at=2023-09-27 19:03:35, species_id='uHJU', bionty_source_id='RlqM', created_by_id='DzTjkKse')

Query files by markers #

Query panels and datasets based on markers, e.g., which datasets have 'CD14' in the flow panel:

panels_with_cd14 = ln.FeatureSet.filter(cell_markers=markers.cd14).all()
ln.File.filter(feature_sets__in=panels_with_cd14).df()
storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
RY2suClyjVaJf7WYC0SH VvPocT7z None .h5ad AnnData Flow cytometry file 2 None 6837528 aWYCHE1-26gzAU6rlgoMtQ md5 SmQmhrhigFPLz8 iKuM6oyOKGVBDvx0YQ7P None 2023-09-27 19:03:52 DzTjkKse
8RZdIbll16NTrAwo7lRL VvPocT7z None .h5ad AnnData See dataset 8RZdIbll16NTrAwo7lRL None 33369696 fnzTGHE8BlkiMMIqHLDjyA md5 OWuTtS4SAponz8 6LxzHJKBOJu5s56VPocZ None 2023-09-27 19:03:42 DzTjkKse

Access registries:

features = ln.Feature.lookup()

Find shared cell markers between two files:

files = ln.File.filter(feature_sets__in=panels_with_cd14).list()
file1, file2 = files[0], files[1]
shared_markers = file1.features["var"] & file2.features["var"]
shared_markers.list("name")
['CD27', 'CD8', 'Ccr7', 'CD57', 'Cd4', 'CD3', 'Cd19', 'CD28', 'CD127', 'Cd14']