Bulk RNA-seq#
Bulk RNA sequencing (RNA-seq) is a high-throughput technique that measures the gene expression levels of thousands of genes simultaneously, providing insights into overall cellular transcription patterns.
Here, we’ll demonstrate how to make a bulk RNA-seq count matrix data ware house ready and apply the TVR (transform, validate, register) workflow on it.
Setup#
!lamin init --storage test-bulkrna --schema bionty
Show code cell output
✅ saved: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-27 19:02:59)
✅ saved: Storage(id='bQopRlzQ', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-bulkrna', type='local', updated_at=2023-09-27 19:02:59, created_by_id='DzTjkKse')
💡 loaded instance: testuser1/test-bulkrna
💡 did not register local instance on hub (if you want, call `lamin register`)
import lamindb as ln
from pathlib import Path
import lnschema_bionty as lb
import pandas as pd
import anndata as ad
💡 loaded instance: testuser1/test-bulkrna (lamindb 0.54.2)
Access #
We start by simulating a nf-core RNA-seq run which yields us a count matrix file.
(See Nextflow for running this with Nextflow.)
# pretend we're running a bulk RNA-seq pipeline
ln.track(ln.Transform(name="nf-core RNA-seq", reference="https://nf-co.re/rnaseq"))
# create a directory for its output
Path("./test-bulkrna/output_dir").mkdir(exist_ok=True)
# get the count matrix
path = ln.dev.datasets.file_tsv_rnaseq_nfcore_salmon_merged_gene_counts(
populate_registries=True
)
# move it into the output directory
path = path.rename(f"./test-bulkrna/output_dir/{path.name}")
# register it
ln.File(path, description="Merged Bulk RNA counts").save()
Show code cell output
💡 Transform(id='EdppWqXFmb928u', name='nf-core RNA-seq', type=notebook, reference='https://nf-co.re/rnaseq', updated_at=2023-09-27 19:03:02, created_by_id='DzTjkKse')
💡 Run(id='9zg9rywolBgtTlFOBrhu', run_at=2023-09-27 19:03:02, transform_id='EdppWqXFmb928u', created_by_id='DzTjkKse')
❗ file has more than one suffix (path.suffixes), using only last suffix: '.tsv' - if you want your file format to be recognized, make an issue: https://github.com/laminlabs/lamindb/issues/new
Transform #
ln.track()
💡 notebook imports: anndata==0.9.2 lamindb==0.54.2 lnschema_bionty==0.31.2 pandas==1.5.3
💡 Transform(id='s5V0dNMVwL9iz8', name='Bulk RNA-seq', short_name='bulkrna', version='0', type=notebook, updated_at=2023-09-27 19:03:07, created_by_id='DzTjkKse')
💡 Run(id='88mJtPbePfNA0X212P8A', run_at=2023-09-27 19:03:07, transform_id='s5V0dNMVwL9iz8', created_by_id='DzTjkKse')
Let’s query the file:
file = ln.File.filter(description="Merged Bulk RNA counts").one()
df = file.load()
If we look at it, we realize it deviates far from the tidy data standard Wickham14, conventions of statistics & machine learning Hastie09, Murphy12 and the major Python & R data packages.
Variables are not in columns and observations are not in rows:
df
gene_id | gene_name | RAP1_IAA_30M_REP1 | RAP1_UNINDUCED_REP1 | RAP1_UNINDUCED_REP2 | WT_REP1 | WT_REP2 | |
---|---|---|---|---|---|---|---|
0 | Gfp_transgene_gene | Gfp_transgene_gene | 0.0 | 0.000 | 0.0 | 0.0 | 0.0 |
1 | HRA1 | HRA1 | 0.0 | 8.572 | 0.0 | 0.0 | 0.0 |
2 | snR18 | snR18 | 3.0 | 8.000 | 4.0 | 8.0 | 8.0 |
3 | tA(UGC)A | TGA1 | 0.0 | 0.000 | 0.0 | 0.0 | 0.0 |
4 | tL(CAA)A | SUP56 | 0.0 | 0.000 | 0.0 | 0.0 | 0.0 |
... | ... | ... | ... | ... | ... | ... | ... |
120 | YAR064W | YAR064W | 0.0 | 2.000 | 0.0 | 0.0 | 0.0 |
121 | YAR066W | YAR066W | 3.0 | 13.000 | 8.0 | 5.0 | 11.0 |
122 | YAR068W | YAR068W | 9.0 | 28.000 | 24.0 | 5.0 | 7.0 |
123 | YAR069C | YAR069C | 0.0 | 0.000 | 0.0 | 0.0 | 1.0 |
124 | YAR070C | YAR070C | 0.0 | 0.000 | 0.0 | 0.0 | 0.0 |
125 rows × 7 columns
Let’s change that and move observations into rows:
df = df.T
df
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
gene_id | Gfp_transgene_gene | HRA1 | snR18 | tA(UGC)A | tL(CAA)A | tP(UGG)A | tS(AGA)A | YAL001C | YAL002W | YAL003W | ... | YAR050W | YAR053W | YAR060C | YAR061W | YAR062W | YAR064W | YAR066W | YAR068W | YAR069C | YAR070C |
gene_name | Gfp_transgene_gene | HRA1 | snR18 | TGA1 | SUP56 | TRN1 | tS(AGA)A | TFC3 | VPS8 | EFB1 | ... | FLO1 | YAR053W | YAR060C | YAR061W | YAR062W | YAR064W | YAR066W | YAR068W | YAR069C | YAR070C |
RAP1_IAA_30M_REP1 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 1.0 | 55.0 | 36.0 | 632.0 | ... | 4.357 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 3.0 | 9.0 | 0.0 | 0.0 |
RAP1_UNINDUCED_REP1 | 0.0 | 8.572 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 72.0 | 33.0 | 810.0 | ... | 15.72 | 0.0 | 0.0 | 0.0 | 3.0 | 2.0 | 13.0 | 28.0 | 0.0 | 0.0 |
RAP1_UNINDUCED_REP2 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 115.0 | 82.0 | 1693.0 | ... | 13.772 | 0.0 | 4.0 | 0.0 | 2.0 | 0.0 | 8.0 | 24.0 | 0.0 | 0.0 |
WT_REP1 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 1.0 | 0.0 | 60.0 | 63.0 | 1115.0 | ... | 13.465 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 5.0 | 5.0 | 0.0 | 0.0 |
WT_REP2 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30.0 | 25.0 | 704.0 | ... | 6.891 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 11.0 | 7.0 | 1.0 | 0.0 |
7 rows × 125 columns
Now, it’s clear that the first two rows are in fact no observations, but descriptions of the variables (or features) themselves.
Let’s create an AnnData object to model this. First, create a dataframe for the variables:
var = pd.DataFrame({"gene_name": df.loc["gene_name"].values}, index=df.loc["gene_id"])
var.head()
gene_name | |
---|---|
gene_id | |
Gfp_transgene_gene | Gfp_transgene_gene |
HRA1 | HRA1 |
snR18 | snR18 |
tA(UGC)A | TGA1 |
tL(CAA)A | SUP56 |
Now, let’s create an AnnData:
# we're also fixing the datatype here, which was string in the tsv
adata = ad.AnnData(df.iloc[2:].astype("float32"), var=var)
adata
AnnData object with n_obs × n_vars = 5 × 125
var: 'gene_name'
The AnnData object is in tidy form and complies with conventions of statistics and machine learning:
adata.to_df()
gene_id | Gfp_transgene_gene | HRA1 | snR18 | tA(UGC)A | tL(CAA)A | tP(UGG)A | tS(AGA)A | YAL001C | YAL002W | YAL003W | ... | YAR050W | YAR053W | YAR060C | YAR061W | YAR062W | YAR064W | YAR066W | YAR068W | YAR069C | YAR070C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RAP1_IAA_30M_REP1 | 0.0 | 0.000 | 3.0 | 0.0 | 0.0 | 0.0 | 1.0 | 55.0 | 36.0 | 632.0 | ... | 4.357 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 3.0 | 9.0 | 0.0 | 0.0 |
RAP1_UNINDUCED_REP1 | 0.0 | 8.572 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 72.0 | 33.0 | 810.0 | ... | 15.720 | 0.0 | 0.0 | 0.0 | 3.0 | 2.0 | 13.0 | 28.0 | 0.0 | 0.0 |
RAP1_UNINDUCED_REP2 | 0.0 | 0.000 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 115.0 | 82.0 | 1693.0 | ... | 13.772 | 0.0 | 4.0 | 0.0 | 2.0 | 0.0 | 8.0 | 24.0 | 0.0 | 0.0 |
WT_REP1 | 0.0 | 0.000 | 8.0 | 0.0 | 0.0 | 1.0 | 0.0 | 60.0 | 63.0 | 1115.0 | ... | 13.465 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 5.0 | 5.0 | 0.0 | 0.0 |
WT_REP2 | 0.0 | 0.000 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30.0 | 25.0 | 704.0 | ... | 6.891 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 11.0 | 7.0 | 1.0 | 0.0 |
5 rows × 125 columns
Validate #
Let’s create a File object from this AnnData. Because this will validate the gene IDs and these are only defined given a species, we have to set a species context:
lb.settings.species = "saccharomyces cerevisiae"
Almost all gene IDs are validated:
genes = lb.Gene.from_values(adata.var.index, lb.Gene.stable_id)
Show code cell output
❗ did not create Gene records for 2 non-validated stable_ids: 'Gfp_transgene_gene', 'YAR062W'
# also register the 2 non-validated genes obtained from Bionty
ln.save(genes)
Register #
efs = lb.ExperimentalFactor.lookup()
modalities = ln.Modality.lookup()
species = lb.Species.lookup()
features = ln.Feature.lookup()
curated_file = ln.File.from_anndata(
adata,
description="Curated bulk RNA counts",
field=lb.Gene.stable_id,
modality=modalities.rna,
)
❗ 2 terms (1.60%) are not validated for stable_id: Gfp_transgene_gene, YAR062W
Hence, let’s save this file:
curated_file.save()
Link to validated metadata records:
curated_file.labels.add(efs.rna_seq, features.assay)
curated_file.labels.add(species.saccharomyces_cerevisiae, features.species)
curated_file.describe()
File(id='MqfL2D6pUfYOLU5mnTlu', suffix='.h5ad', accessor='AnnData', description='Curated bulk RNA counts', size=28180, hash='6bieh8XjOCCz6bJToN4u1g', hash_type='md5', updated_at=2023-09-27 19:03:09)
Provenance:
🗃️ storage: Storage(id='bQopRlzQ', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-bulkrna', type='local', updated_at=2023-09-27 19:02:59, created_by_id='DzTjkKse')
💫 transform: Transform(id='s5V0dNMVwL9iz8', name='Bulk RNA-seq', short_name='bulkrna', version='0', type=notebook, updated_at=2023-09-27 19:03:09, created_by_id='DzTjkKse')
👣 run: Run(id='88mJtPbePfNA0X212P8A', run_at=2023-09-27 19:03:07, transform_id='s5V0dNMVwL9iz8', created_by_id='DzTjkKse')
👤 created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-27 19:02:59)
Features:
var: FeatureSet(id='udANDtZM8CFSXAVdDCO5', n=123, type='number', registry='bionty.Gene', hash='8j8y_AHnWb5huZ2hXCDj', updated_at=2023-09-27 19:03:09, modality_id='rrHFsSup', created_by_id='DzTjkKse')
'SWC3', 'None', 'ATS1', 'DEP1', 'SEO1', 'None', 'BUD14', 'LTE1', 'None', 'TGA1', ...
external: FeatureSet(id='eKbDB2ajptk8UQ9Qva5l', n=2, registry='core.Feature', hash='a5SQoAxxe5BQhmCmjYOb', updated_at=2023-09-27 19:03:09, modality_id='tsBN7M7B', created_by_id='DzTjkKse')
🔗 species (1, bionty.Species): 'saccharomyces cerevisiae'
🔗 assay (1, bionty.ExperimentalFactor): 'RNA-Seq'
Labels:
🏷️ species (1, bionty.Species): 'saccharomyces cerevisiae'
🏷️ experimental_factors (1, bionty.ExperimentalFactor): 'RNA-Seq'
Example queries#
We have two files in the file registry:
ln.File.filter().df()
storage_id | key | suffix | accessor | description | version | size | hash | hash_type | transform_id | run_id | initial_version_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||
dj3YEFtLs4fROol1rSPN | bQopRlzQ | output_dir/salmon.merged.gene_counts.tsv | .tsv | None | Merged Bulk RNA counts | None | 3787 | xxw0k3au3KtxFcgtbEr4eQ | md5 | EdppWqXFmb928u | 9zg9rywolBgtTlFOBrhu | None | 2023-09-27 19:03:07 | DzTjkKse |
MqfL2D6pUfYOLU5mnTlu | bQopRlzQ | None | .h5ad | AnnData | Curated bulk RNA counts | None | 28180 | 6bieh8XjOCCz6bJToN4u1g | md5 | s5V0dNMVwL9iz8 | 88mJtPbePfNA0X212P8A | None | 2023-09-27 19:03:09 | DzTjkKse |
curated_file.view_flow()
Let’s by query by gene:
genes = lb.Gene.lookup()
genes.spo7
Gene(id='tpzwPcGZFK1y', symbol='SPO7', stable_id='YAL009W', ncbi_gene_ids='851224', biotype='protein_coding', description='Putative regulatory subunit of Nem1p-Spo7p phosphatase holoenzyme; regulates nuclear growth by controlling phospholipid biosynthesis, required for normal nuclear envelope morphology, premeiotic replication, and sporulation [Source:SGD;Acc:S000000007]', synonyms='', updated_at=2023-09-27 19:03:09, species_id='nn8c', bionty_source_id='3FTf', created_by_id='DzTjkKse')
# a feature set containing RNA measurements and SPO7 gene expression
feature_set = ln.FeatureSet.filter(genes=genes.spo7, modality__name="rna").first()
# files that link to this feature set
ln.File.filter(feature_sets=feature_set).df()
storage_id | key | suffix | accessor | description | version | size | hash | hash_type | transform_id | run_id | initial_version_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||
MqfL2D6pUfYOLU5mnTlu | bQopRlzQ | None | .h5ad | AnnData | Curated bulk RNA counts | None | 28180 | 6bieh8XjOCCz6bJToN4u1g | md5 | s5V0dNMVwL9iz8 | 88mJtPbePfNA0X212P8A | None | 2023-09-27 19:03:09 | DzTjkKse |
# clean up test instance
!lamin delete --force test-bulkrna
!rm -r test-bulkrna
Show code cell output
💡 deleting instance testuser1/test-bulkrna
✅ deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-bulkrna.env
✅ instance cache deleted
✅ deleted '.lndb' sqlite file
❗ consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-bulkrna